Dispersion of particles in an infinite-horizon Lorentz gas
نویسندگان
چکیده
منابع مشابه
Statistical Properties of Two-Dimensional Periodic Lorentz Gas with Infinite Horizon
We study the asymptotic statistical behavior of the 2-dimensional periodic Lorentz gas with an infinite horizon. We consider a particle moving freely in the plane with elastic reflections from a periodic set of fixed convex scatterers. We assume that the initial position of the particle in the phase space is random with uniform distribution with respect to the Liouville measure of the periodic ...
متن کاملLyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions
We compute the Lyapunov exponent, generalized Lyapunov exponents and the diffusion constant for a Lorentz gas on a square lattice, thus having infinite horizon. Approximate zeta functions, written in terms of probabilities rather than periodic orbits, are used in order to avoid the convergence problems of cycle expansions. The emphasis is on the relation between the analytic structure of the ze...
متن کاملConvergence of trajectories in infinite horizon optimization
In this paper, we investigate the convergence of a sequence of minimizing trajectories in infinite horizon optimization problems. The convergence is considered in the sense of ideals and their particular case called the statistical convergence. The optimality is defined as a total cost over the infinite horizon.
متن کاملAnomalous Current in Periodic Lorentz Gases with Infinite Horizon
We study electrical current in two-dimensional periodic Lorentz gas in the presence of a weak homogeneous electric field. When the horizon is finite, i.e. the free flights between collisions are bounded, the resulting current J is proportional to the voltage difference E, i.e. J = 1 2 D∗E + o(‖E‖), where D∗ is the diffusion matrix of the Lorentz particle moving freely without electrical field (...
متن کاملEscape rates and physical measures for the infinite horizon Lorentz gas with holes
We study the statistical properties of the infinite horizon Lorentz gas after the introduction of small holes. Our basic approach is to prove the persistence of a spectral gap for the transfer operator associated with the billiard map in the presence of such holes. The new feature here is the interaction between the holes and the infinite horizon corridors, which causes previous approaches to f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2018
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.98.010101